Functionally dissociating temporal and motor components of response preparation in left intraparietal sulcus
نویسندگان
چکیده
To optimise speed and accuracy of motor behaviour, we can prepare not only the type of movement to be made but also the time at which it will be executed. Previous cued reaction-time paradigms have shown that anticipating the moment in time at which this response will be made ("temporal orienting") or selectively preparing the motor effector with which an imminent response will be made (motor intention or "motor orienting") recruits similar regions of left intraparietal sulcus (IPS), raising the possibility that these two preparatory processes are inextricably co-activated. We used a factorial design to independently cue motor and temporal components of response preparation within the same experimental paradigm. By differentially cueing either ocular or manual response systems, rather than spatially lateralised responses within just one of these systems, potential spatial confounds were removed. We demonstrated that temporal and motor orienting were behaviourally dissociable, each capable of improving performance alone. Crucially, fMRI data revealed that temporal orienting activated the left IPS even if the motor effector that would be used to execute the response was unpredictable. Moreover, temporal orienting activated left IPS whether the target required a saccadic or manual response, and whether this response was left- or right-sided, thus confirming the ubiquity of left IPS activation for temporal orienting. Finally, a small region of left IPS was also activated by motor orienting for manual, though not saccadic, responses. Despite their functional independence therefore, temporal orienting and manual motor orienting nevertheless engage partially overlapping regions of left IPS, possibly reflecting their shared ontogenetic roots.
منابع مشابه
Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing.
We studied the functional organization of human posterior parietal and frontal cortex using functional magnetic resonance imaging (fMRI) to map preparatory signals for attending, looking, and pointing to a peripheral visual location. The human frontal eye field and two separate regions in the intraparietal sulcus were similarly recruited in all conditions, suggesting an attentional role that ge...
متن کاملOrienting Attention in Time Activates Left Intraparietal Sulcus for Both Perceptual and Motor Task Goals
Attention can be directed not only toward a location in space but also to a moment in time ("temporal orienting"). Temporally informative cues allow subjects to predict when an imminent event will occur, thereby speeding responses to that event. In contrast to spatial orienting, temporal orienting preferentially activates left inferior parietal cortex. Yet, left parietal cortex is also implicat...
متن کاملThe effect of stimulus-response compatibility on cortical motor activation.
Stimulus-response compatibility (SRC) is a general term describing the relationship between a triggering stimulus and its associated motor response. The relationship between stimulus and response can be manipulated at the level of the set of stimulus and response characteristics (set-level) or at the level of the mapping between the individual elements of the stimulus and response sets (element...
متن کاملThe neural substrates of writing: A functional magnetic resonance imaging study
Background: Hypotheses regarding the neural substrates of writing have been derived from the study of individuals with acquired agraphia. Functional neuroimaging offers another methodology to test these hypotheses in neurologically intact individuals. Aims: This study was designed to identify possible neural substrates for the linguistic and motor components of writing in normal English-speakin...
متن کاملFunctional asymmetries revealed in visually guided saccades: an FMRI study.
Because eye movements are a fundamental tool for spatial exploration, we hypothesized that the neural bases of these movements in humans should be under right cerebral dominance, as already described for spatial attention. We used functional magnetic resonance imaging in 27 right-handed participants who alternated central fixation with either large or small visually guided saccades (VGS), equal...
متن کامل